

AN0063 Application Note

AT32 Motor Monitor Application Note

Introduction

This application note mainly introduces how to use AT32 MCU with motor control library and PC software, how to debug control parameters and how to control the motor, helping users to have a better understanding of PC software features, operation methods and usage precautions, and use PC software for debugging of motor parameters and control parameters.

Applicable products:

Part number AT32F4xx, AT32L0xx

Contents

1	Soft	ware a	and hardware requirements	6
	1.1	Hardv	ware	6
	1.2	Softw	/are	6
2	Use	r inter	face operation	7
	2.1	Conn	ection settings	7
	2.2	Contr	ol and status display list	7
		2.2.1	Status machine	7
		2.2.2	Firmware control mode	8
		2.2.3	Error type	8
		2.2.4	Control command button operation	9
		2.2.5	Control mode droplist	9
	2.3	Basic	parameters	10
		2.3.1	Voltage and temperature display	10
		2.3.2	Maximum/minimum speed	11
		2.3.3	Maximum/minimum current	11
		2.3.4	Maximum/minimum application angle (encoder mode)	12
		2.3.5	Target speed/torque setting	12
		2.3.6	Position reference/position measured (encoder mode)	13
		2.3.7	Waveform drawing and parameter setting	14
	2.4	Paran	neter setting	16
		2.4.1	Open loop control	16
		2.4.2	Voltage control	16
		2.4.3	IQ tune	17
		2.4.4	ID tune	19
		2.4.5	Current loop control	20
		2.4.6	Speed control	21
		2.4.7	Position control	23
		2.4.8	Six-step square-wave sensorless control	25
		2.4.9	Sensorless vector control	26
3	Rev	ision h	nistory	

List of tables

Table 1. Waveform drawing buttons	15
Table 2. Document revision history	28

17[27]

List of figures

Figure 1 Communication setting	7
Figure 2 Status machine display area	8
Figure 3 Firmware control mode display area	8
Figure 4 Error type display area	8
Figure 5 Control command buttons	9
Figure 6 Control mode droplist	9
Figure 7 Basic parameters setting page	10
Figure 8 Voltage and temperature display area	10
Figure 9 Maximum/minimum/current speed display area	11
Figure 10 Modify the maximum/minimum speed definition	11
Figure 11 Maximum/minimum current display area	11
Figure 12 LOG message after successful current setting	11
Figure 13 Maximum/minimum application angle display area	12
Figure 14 Modify the maximum/minimum application angle	12
Figure 15 Speed control mode (external voltage control)	12
Figure 16 Torque control mode (external voltage control)	13
Figure 17 Set target speed in software control mode	13
Figure 18 Position reference and position measured	13
Figure 19 Set drawing channel parameters	14
Figure 20 Waveform drawing icon	14
Figure 21 Waveform drawing	14
Figure 22 Select open loop control	16
Figure 23 Open loop control parameters	16
Figure 24 Select voltage control	16
Figure 25 Voltage control parameters	17
Figure 26 Schematic diagram of step current	17
Figure 27 Select IQ Tune	17
Figure 28 Q shaft PID parameters and step current related parameters	17
Figure 29 Modify channel monitoring parameters (IQ Tune)	18
Figure 30 IQ tune waveform	18
Figure 31 D shaft PID parameters and step current related parameters	19
Figure 32 Modify channel monitoring parameters (ID Tune)	19
Figure 33 Set torque/flux reference	20
Figure 34 Modify channel monitoring parameters (current loop control)	20

<u>475</u>371;

Figure 35 Waveform in current loop control mode	21
Figure 36 Set PID parameters, acceleration and deceleration	21
Figure 37 Set target speed	22
Figure 38 Modify channel monitoring parameters (speed control)	22
Figure 39 Waveform in speed control mode	22
Figure 40. Position reference and position measured	23
Figure 41. Set PID parameters	23
Figure 42. Set position reference	23
Figure 43. Modify channel monitoring parameters (position control)	24
Figure 44. Waveform in position control mode	24
Figure 45 Six-step square-wave sensorless control parameter setting (ADC detection)	25
Figure 46 Sensorless observer + PLL parameters	26
Figure 47 Open loop voltage and initial angle detection modes	27
Figure 48 Align and go mode	27

1 Software and hardware requirements

A BLDC, AT-Link or J-Link, AT motor development board and AT motor control library are required. Run the executable "ArteryMotorMonitor.exe" directly, without the need for installation.

1.1 Hardware

- Windows®-based PC (Windows 8, Windows 10, Windows 11) to install user control interface program
- Micro-B USB cable to connect the development board with PC for communication
- ARTERY AT-Link or 3rd-party programmer
- 3-phase AC motor with 12V~60V rated voltage and below 30A rated current
- DC power supply
- ARTERY motor development board

1.2 Software

- ARTERY AT32 motor control demonstration project program
- Keil® µvision IDE (µvision V5.36.0.0 is used in this example)

2 User interface operation

2.1 Connection settings

After the hardware and software are well prepared, set up connection between UI and the control board as follows:

STEP-1

Connect the motor, AT-Link/J-Link and board power supply to the motor development board, and connect USART interface to PC via an USB cable.

STEP-2

Use MDK to compile demo project code, and use J-Link or AT-Link to download to the on-board chip.

STEP-3

Run ArteryMotorMonitor_V2.1.1.exe (software version: V2.1.1); click File -> Open Project and select ArteryMotorMonitor_V2.1.1.atmcx-> Open.

STEP-4

Click the update icon(1.) of Serial Port and select the corresponding serial port (2.); then click Open(3.) to enable real-time communication, as shown in Figure 1 below.

Figure 1 Communication setting

STEP-5

Click the Play button (4.) to update UI data periodically and start real-time communication with the target board, such as sending a motor startup/stop command, real-time speed adjustment, setting current PID parameters, monitoring parameters and drawing waveform.

2.2 Control and status display list

This region contains the display area of status machine and error type, and the operation area of control command button and droplist of control mode to perform motor startup/stop, encoder calibration, writing parameters to Flash, etc., or switch control mode, such as open loop control, voltage control, ID/IQ tune, torque control, speed control and position control.

2.2.1 Status machine

It displays the current status of motor control program, including the Idle, Safety ready, Angle init, Starting, Running, Free run, I_tune, Enc_align and Error.

Figure 2 Status machine display area

Status
ESC_STATE_SAFTY_READY

Firmware control mode 2.2.2

It displays the firmware control mode, as shown in Figure 3. In this example, it is the six-step square-wave + Hall sensor.

Figure 3 Firmware control mode display area
BLDC - hall Speed Control Control source external voltage control
Control source external voltage control

Error type 2.2.3

It displays the type of error in motor running process, including over-voltage, under-voltage, overtemperature, encoder error, Hall error and startup error.

	2	no error
		over voltage error
		under voltage erro
		over temperature ϵ
		over current error
		encoder error
		hall error
		startup error
<	٤	>

2.2.4 Control command button operation

1) This application software contains five control command buttons that are used for motor startup/stop, encoder calibration, write operation to Flash, error clearing, etc.

l iguie 5 CO	
	Command
	Start Motor
	Stop Motor
	Encoder Align
	Write Flash
	Fault Ack

Figure 5 Control command buttons

2) Start Motor

Click this button to start up motor.

- Stop Motor
 Click this button to stop motor.
- 4) Encoder Align

Click this button to perform encoder zero calibration (invalid in open loop control mode).

5) Write Flash

When parameters have been debugged or in case of modifying motor parameters, click this button to write parameters to Flash. After this command is executed, the controller will remember these parameters so that users do not need to re-debug motor parameters for the next operation.

6) Fault Ack

Click this button to clear the current error status.

2.2.5 Control mode droplist

Totally seven control modes are optional, including open loop control, voltage control, ID/IQ tune, torque control, speed control and position control, and parameters are different in different modes. Therefore, this area should be used together with the parameter setting page, which is detailed in Section 2.4.

BLDC - hall	
Speed Control 👻	
Control source	
external voltage control 👻	

Figure 6 Control mode droplist

Basic parameters 2.3

The basic parameters display/setting page contains Vdc voltage and MOS temperature monitoring, maximum/minimum application speed, maximum/minimum current, maximum/minimum application angle, target angle/speed/torque, and drawing area channel selection.

Power board status				Diagram parameter setting
Bus Voltage measu	red	23.169	volt	Torque reference (Iq) \checkmark
Mos temperature n	neasured	25.22	°C	Torque reference (Iq)
				Save
Maximum applicati	ion speed	6500	mai	Angle
Minimum applicati	on speed	200	rpm	Max application angle 36000 degree
Speed measured		0	rpm	Min application angle -36000 degree
Maximum Current	4,999	A		
Minimum Current	-4.999	A		
gle				Angle
sition reference 0)	degree		Position measured 0 degree

Figure 7 Basic parameters setting page

Voltage and temperature display 2.3.1

It displays the real-time voltage (unit: Volt) and MOS temperature (unit: °C) to monitor and check for over-voltage, under-voltage or over-temperature. In case of any error, it will be displayed in the error list as mentioned in Section 2.2.3.

Power board status		
Bus Voltage measured	2.24615	volt
Mos temperature measured	25.49	°C

2.3.2 Maximum/minimum speed

The maximum/minimum speed and current speed (unit: rpm) are displayed in this area. This interface only supports read access, and modification to the maximum/minimum speed should be performed in firmware, for example, modifying the MAX_SPEED_RPM and MIN_SPEED_RPM in *mc_ctrl_param.h* file.

inimum application speed 10 rpm
peed measured 0 rpm

Figure 9 Maximum/minimum/current speed display area

Figure 10 Modify the maximum/minimum speed definition

<u></u>	aram.h	
63	<pre>#define MIN_SPEED_RPM</pre>	(10)
64	<pre>#define MAX_SPEED_RPM</pre>	(4200)
65	#define MIN_CONTROL_SPEED	(120)

2.3.3 Maximum/minimum current

The maximum/minimum current (unit: ampere) for motor control can be read and set in this area. The current can be adjusted according to the motor characteristics or the driver board. By default, the maximum/minimum current set by firmware is read. To adjust the current, double click to change the value, and the bottom LOG displays a message after successful setting.

Figure 11	Maximum/minimum	current	display	area
		•••••		

Maximum Current	4.98962	A
Minimum Current	0.997925	A

Figure 12 LOG message after successful current setting

	Time	Motor	Message
1	17:28:59		Set REG 36 = 3932.16:OK
2	17:28:52		Set REG 36 = 3276.8:OK

2.3.4 Maximum/minimum application angle (encoder mode)

The maximum/minimum application angles (unit: degree) for motor control are displayed in this area. This interface only supports read access, and modification to the maximum/minimum application angles should be performed in firmware, for example, modifying the MAX_POSITION_ANGLE and MIN_POSITION_ANGLE in *mc_ctrl_param.h* file.

Figure 13 Maximum/minimum application angle display area

Angle		
Max application angle	36000	degree
Min application angle	-36000	degree

Figure 14 Modify the maximum/minimum application angle

<u> </u>	rl_param.h		
56	#define	MAX_POSITION_ANGLE	36000 /* Degree */
57	#define	MIN_POSITION_ANGLE	(-MAX_POSITION_ANGLE)

2.3.5 Target speed/torque setting

Different control parameters are set for different control sources. For example, the "Target speed" is displayed in Speed Control mode, as shown in Figure 15, and the "Torque reference" is displayed in Torque Control mode, as shown in Figure 16.

The target speed is communicated in rpm, and the torque reference is communicated in amperes. There are two available control sources, including the external control and software control.

1) External voltage control

This application software supports external control source. Open the droplist of "Control source" and select "external voltage control", so that users can adjust the speed or torque via external voltage. The target speed or torque reference field displays the converted control speed or torque at the current control voltage.

Note: This field cannot be modified in the external control source mode.

Figure 15 Speed control mode (external voltage control)

Figure 16 Torque control mode (external voltage control)

BLDC - sensorless (ADC)	
Torque Control	
external voltage control	

2) Software control

The software control mode is selected, by default. Open the droplist of "Control source" and select "Software control", as shown in Figure 17. In this mode, users can change the target speed/torque (double click this field to change the value) in UI interface to adjust the motor control speed/torque. The bottom field displays a message after successful setting.

BI	LDC - hall eed Control			•								
Cor sof	ntrol source ftware control			•	Speed	eference	500 rpm	1				
	-											
	Clear	Save										
	Clear	Save							Message			
1	Clear Time 16:49:32	Save Motor	Set REG 10 = 1	500:OK					 Message			
1	Clear Time 16:49:32 16:49:26	Save Motor	Set REG 10 = Set REG 10 = 1	500:OK					Message	 		

Figure 17 Set target speed in software control mode

2.3.6 **Position reference/position measured (encoder mode)**

The position reference and position measured are displayed when the position control mode is selected, as shown in Figure 18. The position reference is communicated in degrees. In position control mode, users can change the position reference (double click this field to change the value) in UI interface to adjust the motor rotor position. The bottom field displays a message after successful setting.

Figure 18	Position	reference a	nd position	measured
-----------	----------	-------------	-------------	----------

Angle			Angle			
Position reference	0	degree	Position measured	0	degree	

Waveform drawing and parameter setting 2.3.7

This application supports dual-channel waveform drawing, as shown in Figure 19. The droplists "la" and "Ib" are used to select channel 1 and channel 2 related parameters, respectively. Select the required parameters and then click "Save".

Click the drawing icon as shown in Figure 20 to generate a new window and draw the waveform.

Figure 19 Set drawing channel parameters

Diagram parameter setting		
Ia	\sim	
Ib	\sim	
Save		

Figure 20 Waveform drawing icon

Ŵ

As shown in Figure 21, the left vertical axis represents channel 1 and the right represents channel 2. The waveform color is the same as that of the axis. For example, channel 1 is represented by "la (A)", and the corresponding waveform is drawn in green; channel 2 is represented by "Ib (A)", and the corresponding waveform is drawn in purple. Besides, the sampling rate of the waveform is correlated to the PWM interrupt frequency. If the PWM interrupt frequency is 20 KHz, the sampling period is 50 us (maximum 32s can be recorded).

Figure 21 Waveform drawing

Table 1 lists the waveform drawing buttons.

lcon	Description
Q	Set the display range of channel 1 vertical coordinate
X	Disable zoom-in (channel 1 vertical coordinate)
Q	Set the display range of channel 2 vertical coordinate
X	Disable zoom-in (channel 2 vertical coordinate)
Q N V V V	Tick to synchronize channel 1 and channel 2 coordinates
√	Untick to cancel synchronization of channel 1 and channel 2 coordinates
xq	Set the display range of horizontal coordinate
X	Disable horizontal axis zoom-in
	Start waveform update
	Stop waveform update
1	Save the current waveform (after waveform update is stopped)
8 sec V	Display range of waveform horizontal coordinate (drop-down menu: 1s, 2s, 4s, 8s,
	16s and 32s)
	Right click to zoom in
	Right click to move up/down and left/right
•	Switch mouse wheel functions (zoom in/out, or move horizontally/vertically)
	Slide the mouse wheel to zoom in/out the horizontal and vertical axes
	simultaneously
	Slide the mouse wheel to zoom in/out the vertical axis
😫 🔇 🕵	Slide the mouse wheel to zoom in/out the horizontal axis
4	No reaction when slide the mouse wheel
	Slide the mouse wheel to move the horizontal and vertical axes simultaneously
	Slide the mouse wheel to move the vertical axis
<u>الم</u>	Slide the mouse wheel to move the horizontal axis
	No reaction when slide the mouse wheel
***	Waveforms of channel 1 and channel 2 are displayed on the same coordinate axis
	Waveforms of channel 1 and channel 2 are displayed on different coordinate axes

Table 1. Waveform drawing buttons

2.4 Parameter setting

It is an advanced parameter setting page. Users can refer to Section 2.2.5 to modify parameters on this page, and start motor to confirm response or click drawing icon to view the response waveforms after debugging. For details about waveform drawing, please refer to Section 2.3.7.

2.4.1 Open loop control

Select "Open loop voltage" in the open loop control mode to drive the motor without position sensor, and check whether the motor runs properly and whether the running direction is correct. The encoder also can be used to check whether the running direction in encoder mode is correct. In sensorless FOC mode, the "Open loop voltage" mode is also used for preliminary adjustment of estimator parameters. The open loop voltage and open loop angle increment are increased from 0 according to the motor running speed and motor phase current value.

STEP-1: Select "Open Loop control".

Figure 22 Select open loop control

PMSM - encoder
Open Loop control 🔹

STEP-2: Slowly increase the "Open Loop Voltage" and "Open Loop Angle Increments" values and observe the current until the motor starts running properly (set the open loop voltage value appropriately to prevent overheating damage to the motor).

Figure 23 Open loop control parameters

Open Loop Voltage	1	V
Open Loop Angle Increments	10	

2.4.2 Voltage control

Based on the position sensor, the voltage control mode can be selected to control motor D/Q shaft voltage.

STEP-1: Select "Voltage Control".

Figure 24 Select voltage control

1 Mold - encodel
Voltage Control 👻

STEP-2: Adjust the Q shaft voltage to drive the motor to run; set the D shaft voltage to position the motor magnetic pole to D shaft.

Figure 25 Voltage control parameters

Voltage control		
Vq reference	1	V
Vd reference	0	V

2.4.3 IQ tune

A step current is generated in IQ Tune mode, as shown in Figure 26. Parameters related to the step current are adjustable. The step current is generated to help check the current response after adjusting PID parameters of Q shaft current.

Figure 26 Schematic diagram of step current

Follow the below steps:

STEP-1: Select "IQ Tune".

Figure 27 Select IQ Tune

BLDC - hall
IQ Tune 🔻

STEP-2: Set PID parameters and step current related parameters, as shown in Figure 28.

Figure 28 Q shaft PID parameters and step current related parameters

Plux KP 25000 Current Tune target current 0.999 A Plux KI 3000 Current Tune total period 100 ms Plux KP DIV 2048 Current Tune step period 2 ms	Current Tune target current Current Tune total period Current Tune step period	0.999 100 2	A ms ms
Rux KI 3000 Current Tune total period 100 ms Rux KP DIV 2048 Current Tune step period 2 ms	Current Tune total period Current Tune step period	100 2	ms ms
Hurris KP DIV 2048 Current Tune step period 2 ms	Current Tune step period	2	ms
h / / DN / 4005			
10X KI DIV 4096			

STEP-3: Click "Start Motor".

STEP-4: Set "Torque reference(Iq)" and "Torque measured(Iq)" in "Diagram parameter setting", and then click "Save".

–Diagram par	rameter setting		
Torque refe	erence (Iq)	•	
Torque me	asured (Iq)	•	
Sav	/e		

Figure 29 Modify channel monitoring parameters (IQ Tune)

STEP-5: Click the drawing icon to open the waveform window.

STEP-6: Check whether the current response is as expected, as shown in Figure 30. If it is not as expected, click to stop the motor and repeat STEP-2~STEP-6.

Figure 30 IQ tune waveform

2.4.4 ID tune

A step current is generated in ID Tune mode, as shown in Figure 26. Parameters related to the step current are adjustable. The step current is generated to help check the current response after adjusting PID parameters of D shaft current.

Follow the below steps:

STEP-1: Select "ID Tune"

STEP-2: Set PID parameters and step current related parameters, as shown in Figure 31.

Figure 31 D shaft PID parameters and step current related parameters

Current control			Unit step config		
Flux KP	25000		Current Tune target current	0.999	А
Flux KI	3000		Current Tune total period	100	ms
Flux KP DIV	2048		Current Tune step period	2	ms
Flux KI DIV	4096				

STEP-3: Click "Start Motor".

STEP-4: Set "Flux reference(Id)" and "Flux measured(Id)" in "Diagram parameter setting", and then click "Save".

Figure 32 Modify channel monitoring parameters (ID Tune)

Diagram parameter setting	
Flux reference (Id)	▼
Flux measured (Id)	•
Save	

STEP-5: Click the drawing icon to open the waveform window.

STEP-6. Check whether the current response is as expected. If it is not as expected, click to stop the motor and repeat STEP-2~STEP-6.

Note: Six-step square-wave control mode does not have D shaft current adjusting function (ID Tune); therefore, the ID tune waveform diagram is not applicable in this case.

2.4.5 Current loop control

In current loop control mode, users can adjust the torque reference to control the torque, and check the response through waveform drawing.

Follow the below steps:

STEP-1: Select "Torque Control".

STEP-2. Select "Software control" in "Control source" and then set the "Torque reference".

Figure 33 Set torque/flux reference

Torque reference (Iq) 0.1	.100	Α
Flux reference (Id) 0.0	.000	Α

STEP-4: Click "Start Motor".

STEP-5: Set the "la" and "lb" in "Diagram parameter setting", and then click "Save".

Figure 34 Modify channel monitoring parameters (current loop control)

Diagram parameter setting	
Ia	•
Ib	•
Save	

STEP-6: Click the drawing icon to open the waveform window.

STEP-7: Check whether the current waveform is as expected, as shown in Figure 35.

Figure 35 Waveform in current loop control mode

2.4.6 Speed control

In speed control mode, users can adjust the speed PID parameters, acceleration and deceleration, and check the response after adjustment through waveform drawing.

Follow the below steps:

STEP-1: Select "Speed Control".

STEP-2: Set speed PID parameters, acceleration and deceleration.

Speed control		
Speed KP	1000	
Speed KI	4	
Speed KP DIV	1024	
Speed KI DIV	1024	
Speed acceleration	8	rpm/ms
Speed deceleration	8	rpm/ms

STEP-3. Select "Software control" in "Control source" and set the target speed (Speed reference).

Figure 37 Set target speed

Target speed
Speed reference 0 rpm

STEP-4: Click "Start Motor".

STEP-5: Set "Speed reference(PU)" and "Speed measured(PU)" in "Diagram parameter setting", and then click "Save".

Figure 38 Modify	v channel monitorin	g parameters	(speed control)
i iguio oo moun	<i>y</i> on an internitering	g paramotoro	

-Diag	ram parameter setting	
Spe	red reference(PU) ~	/
Spe	ed measured (PU) ~	1
	Save	

STEP-6: Click the drawing icon to open the waveform window.

STEP-7: Check whether the speed response is as expected, as shown in Figure 39. If it is not as expected, click to stop the motor and repeat STEP-2~STEP-7.

Figure 39 Waveform in speed control mode

2.4.7 **Position control**

In position control mode, users can adjust the position PID parameters, and check the response after adjustment through waveform drawing.

Follow the below steps:

STEP-1: Select "Position Control". With the encoder aligned, the motor angle after rotation is not at the zero position exactly. In this case, both position reference and position measured are the angle after motor rotation.

Figure 40. Position reference and position measured

Angle			 Angle			
Position reference	361.71	degree	Position measured	361.71	degree	

STEP-2: Set position PID parameters.

Figure 41. Set PID parameters

Position KP	2000	
Position KI	1	
Position KI stable	800	
Position KD	100	
Position KP DIV	4096	
Position KI DIV	65536	
Position KD DIV	32	

STEP-3: Set "Position reference", for example, 3600 degrees.

Figure 42. Set position reference

Angle		
Position reference	0	degree

STEP-4: Click "Start Motor".

STEP-5: Set "Position reference(PU)" and "Position measured(PU)" in "Diagram parameter setting", and then click "Save".

Figure 43. Modify channel monitoring parameters (position control)

STEP-6: Click the drawing icon to open the waveform window.

STEP-7: Check whether the position response is as expected, as shown in Figure 44. If it is not as expected, click to stop the motor and repeat STEP-2~STEP-7.

Figure 44. Waveform in position control mode

2.4.8 Six-step square-wave sensorless control

Different from control with sensors, the sensorless control detects BEMF to estimate the rotor position, and adjust the startup current and startup period for different motors. This interface application supports setting of parameters shown in Figure 45, including Start Current and Start Period, as well as EMF low speed offset(rising), EMF low speed offset(falling), EMF high speed offset(rising) and EMF high speed offset(falling) for BEMF phase change with the method of ADC detection.

Start Current0.798059AStart Period4000EMF low speed offset(Rising)120EMF low speed offset(Falling)80EMF high speed offset(Rising)700EMF high speed offset(Falling)1300
Start Period4000EMF low speed offset(Rising)120EMF low speed offset(Falling)80EMF high speed offset(Rising)700EMF high speed offset(Falling)1300
EMF low speed offset(Rising)120EMF low speed offset(Falling)80EMF high speed offset(Rising)700EMF high speed offset(Falling)1300
EMF low speed offset(Falling)80EMF high speed offset(Rising)700EMF high speed offset(Falling)1300
EMF high speed offset(Rising) 700 EMF high speed offset(Falling) 1300
EMF high speed offset(Falling) 1300

Figure 45 Six-step square-wave sensorless control parameter setting (ADC detection)

- 1. Start Current Initial startup current value in sensorless control, unit: A (ampere).
- 2. Start Period

Initial period for the specified initial current, unit: us.

- EMF low speed offset(rising), EMF low speed offset(falling)
 It is the level for BEMF zero crossing point measurement at low speed (rising: positive edge; falling: negative edge). It can be adjusted for different sensing circuit or motor characteristics. In this example, the rising is 120 and the falling is 80.
- 4. EMF high speed offset(rising), EMF high speed offset(falling) It is the level for BEMF zero crossing point measurement at high speed (rising: positive edge; falling: negative edge). It can be adjusted for different sensing circuit or motor characteristics. In this example, the rising is 700 and the falling is 1300.

2.4.9 Sensorless vector control

Different from control with sensors, the sensorless control detects BEMF to estimate the rotor position. The AT motor library uses Luenberger observer and Q-PLL method for BEMF measurement. Parameters are as shown in Figure 46, and users can use open loop control to run the motor to adjust these parameters.

-Sensor-less ob:	erver+PLL	
Observer C1	15000	
Observer C2	-20000	
PLL KP	5000	
PLL KI	5	
PLL KP DIV	32768	
PLL KI DIV	32768	

Figure 46 Sensorless observer + PLL parameters

In addition, AT motor library provides three startup modes, i.e., open loop voltage, align and go, and initial angle detection, and relevant parameters are shown in Figure 47 and Figure 48, including the Startup Max. Speed, Startup Open Loop Voltage, Startup Open Loop Slope, Startup Align Time, Startup Align Voltage, Startup Start Time, and Startup Start Current.

1. Startup Max. Speed

It is the maximum speed of motor before entering a closed loop at startup, unit: rpm.

- Startup Open Loop Voltage
 It is the open loop voltage before the motor enters a closed loop at startup, unit: V.
- Startup Open Loop Slope
 It is the open loop acceleration before the motor enters a closed loop at startup, unit: rpm/s.
- Startup Align Time It is the align time at motor startup, unit: ms.
- Startup Align Voltage It is the align/startup voltage at motor startup, unit: V
- Startup Start Time
 It is the startup time before the motor entering a closed loop after alignment at startup, unit: ms.
- Startup Start Current
 It is the current command to enter torque control after motor startup, unit: A (ampere).

artup Max. Speed	400	rpm
Startup Open Loop Voltage	1.021	V
Startup Open Loop Slope	800	rpm/s
Startup Start Current	0.150	Α

Figure 47 Open loop voltage and initial angle detection modes

Figure 48 Align and go mode

Startup Max. Speed	400	rpm	
Startup Align Time	1000	ms	
Startup Align Voltage	1.156	V	
Satrtup Start Time	10	ms	
Startup Start Current	0.150	A	

3 Revision history

Table 2. Document revision history

Date	Version	Revision note
2022.11.18	2.0.1	Initial release.
2022.12.01	2.0.2	Optimized descriptions.
2023.01.06	2.0.3	Added current loop control, and parameters relevant to sensorless vector control.
2023.03.02	2.0.4	Modified relevant parameters in six-step square-wave sensorless control.
2023.04.20	2.1.0	Updated instructions to the new version of the upper computer;
		Added Section 2.4.7 "Position control".

IMPORTANT NOTICE – PLEASE READ CAREFULLY

Purchasers are solely responsible for the selection and use of ARTERY's products and services; ARTERY assumes no liability for purchasers' selection or use of the products and the relevant services.

No license, express or implied, to any intellectual property right is granted by ARTERY herein regardless of the existence of any previous representation in any forms. If any part of this document involves third party's products or services, it does NOT imply that ARTERY authorizes the use of the third party's products or services, or permits any of the intellectual property, or guarantees any uses of the third party's products or services or intellectual property in any way.

Except as provided in ARTERY's terms and conditions of sale for such products, ARTERY disclaims any express or implied warranty, relating to use and/or sale of the products, including but not restricted to liability or warranties relating to merchantability, fitness for a particular purpose (based on the corresponding legal situation in any unjudicial districts), or infringement of any patent, copyright, or other intellectual property right.

ARTERY's products are not designed for the following purposes, and thus not intended for the following uses: (A) Applications that have specific requirements on safety, for example: life-support applications, active implant devices, or systems that have specific requirements on product function safety; (B) Aviation applications; (C) Aerospace applications or environment; (D) Weapons, and/or (E) Other applications that may cause injuries, deaths or property damages. Since ARTERY products are not intended for the above-mentioned purposes, if purchasers apply ARTERY products to these purposes, purchasers are solely responsible for any consequences or risks caused, even if any written notice is sent to ARTERY by purchasers; in addition, purchasers are solely responsible for the compliance with all statutory and regulatory requirements regarding these uses.

Any inconsistency of the sold ARTERY products with the statement and/or technical features specification described in this document will immediately cause the invalidity of any warranty granted by ARTERY products or services stated in this document by ARTERY, and ARTERY disclaims any responsibility in any form.

© 2023 ARTERY Technology – All Rights Reserved